Assignment of presentations

PHYS 607 – Nonlinear Fibre Optics

Prof. Luc Thévenaz, Prof. Brès – 9th of December 2022

Typical duration is 15-20 minutes per presentation, including questions, so the presentation should not include more than max. 10-12 slides. Since these presentations are a complement to the lecture, you are requested to attend the full session. Please **send a copy of your presentation** as "proof of exam".

I. Nonlinear Schrödinger equation: solution, self-similar compression, and limitations - Wu Jiaye How to obtain numerical solutions, extreme cases with exotic dispersion profile.

II. Soliton solution - Ji Xinru

Demonstrate the soliton solution from the nonlinear Schrödinger equation.

III. All optical regeneration - Alvarez Castaño Maria Isabel

Explain the principle of the SPM based Mamyshev 2R regenerator and important design considerations for such regenerator.

IV. Optical demultiplexing (sampling) - Koyaz Yesim

Explain how XPM or FWM can be used for demultiplexing a time multiplexed data stream. Show that FWM based demultiplexing can result in a narrowing of the sampling window with respect to the initial sampling pulse under certain conditions. Compare the two approaches.

V. Phase sensitive parametric amplification - Siddharth Anat

Explain the principle and show it can lead to noise free amplification.

VI. Raman amplification - Yildirim Mustafa

Show the different pumping schemes (forward or backward pumping) with advantages and drawbacks and explain why the Raman amplification generates a low excess noise.

VII. Brillouin amplification - Yang Yuting

Describe and explain the paradox that Brillouin amplifiers show a large excess noise, but Brillouin lasers can generate extremely coherent light, much more coherent than the pumping light.

VIII. Fibre gyroscope - Richter Felix Ulrich

Explain the principle of operation for the optical fibre gyroscope based on a Sagnac loop interferometer and show how the optical nonlinearities set a limit to the accuracy. Explain the strategies to minimize these limitations.

IX. Light polarisation controlled by light - Ünlü Buse

Describe a couple of solutions to actively control the polarisation of a lightwave by another lightwave (e.g. using Brillouin, Raman and Kerr effects).

X. Optical parametric oscillators - Brunetta Samuele

Describe the functioning of an optical parametric oscillator based on the Kerr effect, explain the threshold and the tunability of such oscillator.

XI. All optical regeneration (2R) based on parametric amplification - Hefti Olivia Mathilde

Explain how either higher order FWM output or FWM saturation in a parametric amplifier can be used to regenerate (2R) a signal. Describe how noise (such as phase noise of the pump, sometimes intentionally used to increase Brillouin Threshold) influences the various techniques.

XII. Non-reciprocity via self- and cross-phase modulation in optical resonators- Churaev Mikhail